Equipment, electrical and automation systems & complexes

УДК 685.34.055.4 – 52

СУНКУЕВ Б. С., БЕЛЯЕВ А. В., МАСЛЕННИКОВ К. В., ПЕТУХОВ Ю. В.

Витебский государственный технологический университет

РАСЧЕТ МАКСИМАЛЬНЫХ ПОГРЕШНОСТЕЙ ПОЗИЦИОНИРОВАНИЯ БАЗОВОЙ ПЛАСТИНЫ ТЕХНОЛОГИЧЕСКОЙ ОСНАСТКИ К ШВЕЙНОМУ ПОЛУАВТОМАТУ С ЧИСЛОВЫМ ПРОГРАММНЫМ УПРАВЛЕНИЕМА

Цель. Нахождение максимальной погрешности позиционирования пластины технологической оснастки в поле обработки аналитическим методом.

Методика. Нахождение максимальных погрешностей позиционирования пластин ведется аналитическим методом, который заключается в представлении технологической оснастки в виде кривошипного механизма, составлении алгоритма расчета методом случайного поиска (Монте-Карло), и составлении программы для нахождения этих погрешностей.

Результаты. Разработан аналитический метод определения максимальной погрешности позиционирования пластины технологической оснастки относительно каретки координатного устройства швейного полуавтомата при известных допусках на размеры базирующих элементов.

Научная новизна. До настоящего времени не имеется работ, в которых бы рассматривались вопросы расчета погрешностей позиционирования пластин технологической оснастки.

Практическая значимость. Предложенный новый способ позволяет найти распределение максимальной погрешности позиционирования пластин технологической оснастки в поле обработки.

Ключевые слова: полуавтомат с числовым программным управлением, технологическая оснастка, позиционирование, погрешность, аналитический метод, пластина.

Введение. Технологическая оснастка к швейному полуавтомату с числовым программным управлением (ЧПУ) состоит из базовых пластин (далее пластин), на которых закрепляются плоские детали изделий, подлежащие сборке посредством ниточных соединений. Каждая пластина может устанавливаться на планке, жестко прикрепляемой к каретке координатного устройства швейного полуавтомата. Пластина снимается с планки и устанавливается на нее через определенное число циклов обработки. Поэтому погрешность позиционирования пластины относительно планки и каретки изменяется в некотором интервале. В результате погрешности позиционирования возникают неточности прокладывания соединительных строчек.

Постановка задачи. До настоящего времени не имеется работ, в которых бы рассматривались вопросы расчета погрешностей позиционирования пластин технологической оснастки. В настоящей работе поставлена задача определения распределения максимальной погрешности позиционирования пластины в поле обработки аналитическим методом.

Результаты исследования. На рис. 1 приведена конструктивная схема позиционирования пластины и планки. На планке 1 имеются штифты 2, 3. В пластине 4 имеются два отверстия.

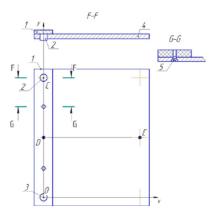


Рис. 1. **Конструктивная схема позиционирования базовой пластины относительно планки:** 1 – планка; 2,3 – штифты; 4 –пластина

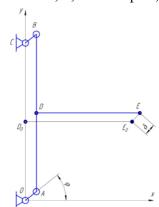


Рис. 2. **Расчетная схема к определению погрешности позиционирования базовой** пластины

При позиционировании пластина 4 устанавливается на штифты 2, 3 и фиксируется в этом положении с помощью двух винтов 5.

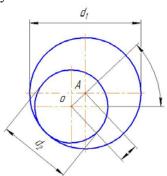


Рис. 3. Относительное положение центра 0 штифта планки и центра A отверстия в базовой пластине

На рис. 2 приведена расчетная схема для определения погрешности позиционирования пластины. На схеме обозначены: O — центр штифта 3, A — центр отверстия в пластине. Смещение центров штифтов и отверстия имеет место за счет зазора между поверхностями штифта и отверстия:

$$OA = \frac{d_1 - d_2}{2},\tag{1}$$

где d_1, d_2 – диаметры отверстия и штифта соответственно.

Аналогичное смещение центров имеет место при установке второго отверстия пластины на штифт 2, на схеме они обозначены C и B.

Пластина представлена в виде отрезка AB, а сам отрезок — в виде шатуна двухкривошипного механизма OABC.

Погрешность позиционирования некоторой точки E пластины 4 будем оценивать расстоянием δ между этой точкой и точкой E_0 неподвижной пластины, с которой совпадает точка E пластины 4 при номинальных размерах OC и AB и отсутствии зазоров между штифтами 2, 3 и отверстиями в пластине. При расчетах координат точки E могут быть применены методики, изложенные в [1].

Блок-схема программы расчета δ_{max} при известных размерах OA, AB, BC и OC при $0 \le \phi < 360^{\circ}$, изменяющимся с интервалом $\Delta \phi$, χ_{E0} , χ_{E0} , χ_{E0} представлена на рис. 4.

Рис. 4. Блок-схема программы расчета δ_{max}

Полученное по приведенному алгоритму значение δ_{\max} соответствует некоторым фиксированным значениям OA, AB, BC и OC. Поставим задачу определения значения $M = \max\left\{\delta_{\max_i}\right\}$, i=1, 2...N, N — число значений δ_{\max} , полученных по приведенному алгоритму. При определении M следует иметь в виду следующее. Расстояние OC может изменяться в пределах $OC = A \pm \Delta_1$, где A — номинальное расстояние между центрами штифтов 2 и 3 (см. рис. 1), Δ_1 — допуск на расстояние A. Расстояние AB может изменяться в пределах $A \pm \Delta_2$ где Δ_2 — допуск на расстояние между отверстиями в базовой пластине.

Диаметры штифтов 2 и 3 (см. рис. 1) изменяются в пределах $d_1 = (d - \Delta d)...d$, где d — номинальный диаметр штифта и отверстия.

Диаметры отверстий планке изменяются 1 пределах $d_2 = d...(d + \Delta d)$, где d – номинальный диаметр штифта и отверстия, Δd – поле допуска. Исходя из этого, получаем минимальный диаметр штифтов $d_{1min} = d - \Delta d$, максимальный диаметр отверстия $d_{2max} = d + \Delta d$. С учетом этого, согласно (1), *OA* и *CB* будут изменяться в пределах $0...2\Delta d$. Для определения M_{max} следует задаться различными комбинациями значений АВ, ОС, ОА, ВС в заданных пределах методом случайного поиска (Монте-Карло) и по проведенному выше алгоритму рассчитать N значений δ_{\max} , каждый раз сохраняя в памяти наибольшее значения δ_{max} . Согласно [2], при N = 10^7 с равной вероятностью будут просчитаны все возможные сочетания параметров АВ, ОС, ОА, ВС, а в памяти сохранится максимальное значение M. Блок-схема программы расчета M методом случайного поиска представлена на рис. 5.

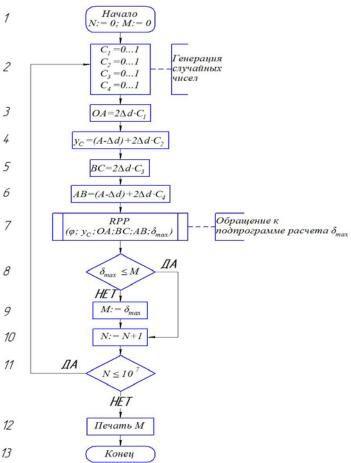


Рис. 5. Блок-схема программы расчета М методом случайного поиска

По приведенным алгоритмам составлена программа расчета M_{max} на языке программирования Delphi.

Для получения картины распределения максимальных погрешностей M_{max} позиционирования точек, расположенных в рабочем поле пластины, произведены расчеты по разработанным программам при следующих исходных данных: размеры рабочего поля пластины по координатам x и y равны соответственно 285 и 380 мм, $\Delta = 0.01$ мм, $\Delta = 0.009$ мм.

На рис. 6 приведен трехмерный график зависимостей погрешностей M_{max} от координат x и y (см. рис. 1) расчетных точек E.

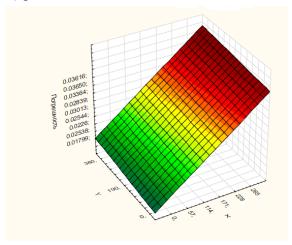


Рис. 6. Трехмерный график зависимостей погрешностей M_{max} от координат x и y

Из графика видно, что наиболее существенно величина M_{max} возрастает при увеличении координаты х расчетной точки: от 0,007 до 0,05 мм.

Выводы. Разработан аналитический метод определения максимальной погрешности позиционирования пластины технологической оснастки относительно каретки координатного устройства швейного полуавтомата при известных допусках на размеры базирующих элементов. Получен график зависимостей погрешностей от координат.

Список использованных источников

- 1. Сункуев, Б. С. Системы автоматизированного проектирования машин: учебное пособие для студентов спец. «Машины и аппараты легкой, текстильной промышленности и бытового обслуживания» учреждений, обеспечивающих получение высшего образования / Б. С. Сункуев, В. Л. Шарстнев, А. Г. Кириллов ; УО «ВГТУ». Витебск, 2004. 112 с.
- 2. Соболь, И. М. Численные методы Монте-Карло. М.: Главная редакция физикоматематической литературы издательства «Наука», 1985 г. 312 с.

References

- 1. Sunkuyev, B. S. (2004). Sistemy avtomatizirovannogo proyektirovaniya mashin [Computer-aided design of machines]. Vitebsk: VSTU [in Belarus].
- 2. Sobol', I. M. (1985). Chislennyye metody Monte-Karlo [Numerical methods of Monte Carlo].

Equipment, electrical and automation systems & complexes

РОЗРАХУНОК МАКСИМАЛЬНОЇ ПОХИБКИ ПОЗИЦІОНУВАННЯ БАЗОВОЇ ПЛАСТИНИ ТЕХНОЛОГІЧНОЇ ОСНАСТКИ ДО ШВЕЙНИХ НАПІВАВТОМАТІВ З ЧИСЛОВИМ ПРОГРАМНИМ УПРАВЛІННЯМ

СУНКУЕВ Б.С., БЕЛЯЄВ А.А., МАСЛЕННИКОВ К.В., ПЄТУХОВ Ю.В.

Вітебський державний технологічний університет

Мета. Знаходження максимальної погрішності позиціонування пластини технологічного оснащення в полі обробки аналітичним методом. Знаходження максимальної погрішності позиціонування пластини технологічного оснащення в полі обробки аналітичним методом.

Методика. Знаходження максимальних погрішностей позиціонування пластинів ведеться аналітичним методом, який полягає в уявленні технологічного оснащення у вигляді кривошипного механізму, складанні алгоритму розрахунку методом випадкового пошуку (Монте-Карло), і складанні програми для знаходження цих погрішностей.

Результати. Розроблений аналітичний метод визначення максимальної погрішності позиціонування пластини технологічного оснащення відносно каретки координатного облаштування швацького напівавтомата при відомих допусках на розміри базуючих елементів.

Наукова новизна. До теперішнього часу нема робіт, в яких би розглядалися питання розрахунку погрішностей позиціонування пластинів технологічного оснащення.

Практична значимість. Запропонований новий спосіб дозволяє знайти розподіл максимальної погрішності позиціонування пластинів технологічного оснащення в полі обробки.

Ключові слова: Напівавтомат з числовим програмним управлінням, технологічне оснащення, позиціонування, погрішність, аналітичний метод, пластина.

CALCULATION OF MAXIMAL ERRORS OF POSITIONING OF BASE PLATE OF THE TECHNOLOGICAL RIGGING TO THE SEWING SEMI-AUTOMATIC DEVICE NUMERICALLY CONTROLLED

SUNKUYEV B.S., BELYAYEV A.A., MASLENNIKOV V.V., PETUKHOV YU.V.

Vitebsk State Technological University

Purpose. Finding the maximal error of positioning of plate of the technological rigging is in the field of processing an analytical method.

Methodology. Search of maximal errors of positioning of plate is conducted by an analytical method that consists in presentation of the technological rigging as a crank-type mechanism, drafting of algorithm of calculation by the method of random search (Monte Carlo), and drafting of the program for searching of these errors.

Findings. Obtained by the method of analytical of determination of maximal error of positioning of plate of the technological rigging concerning co-ordinate device sewing semi-automatic device under known tolerances on dimensions.

Originality. Currently no work, in which the regarded for calculating errors positioning of machining attachments.

Practical value. The proposed method allows to find the maximum positioning error of machining attachments plate in the field of processing.

Keywords: Semi-automatic device numerically controlled, technological rigging, positioning, error, analytical method, plate.