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1. Introduction 

Elastomeric materials (such as rubber and elastomers) 
are widely used in mechanical engineering and construction. 
Numerical modeling of their stress-strain state is associated 
with certain computational problems (due to the appearance 
of fictitious shear strains, a “false shear effect” arises) [1]. 
Existing software systems are designed to solve specific 
classes of problems in the mechanics of deformable solid 
bodies. Their main advantages include ease of use, accuracy 
of the obtained solutions, a high level of automation, etc. [2]. 
However, a common drawback of these systems is that each 
specific system cannot be applied to solve problems that were 

not anticipated by the developers during the design stage. 
Moreover, the user cannot choose an alternative method for 
solving a certain class of problems other than the one embed-
ded in the system during its development [3].

Rubber-like materials have a unique structural composi-
tion. It is based on repeatedly recurring identical links, and 
their length exceeds the transverse dimensions by tens of 
thousands of times [4]. This causes flexibility of the molecular 
chains, which leads to the emergence of highly elastic proper-
ties. Therefore, elastomers have certain distinctive features [5]:

1) the ability to undergo significant deformations under 
the influence of external loading, whether constant or cycli-
cally varying over time, without destruction;
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The object of the study is the stress-strain 
state of elastomeric structures. When solving 
practical problems in elastomer mechanics, 
the issue of selecting an effective computation-
al scheme based on computational mathemat-
ics methods arises. However, due to the insuffi-
cient number of studies, it is difficult to assess 
the optimality of a particular methodology, 
which necessitates an analysis of computation-
al algorithms followed by a comparison of their 
advantages and disadvantages.

In the design of elastomeric structures, the 
numerical analysis of their stress-strain state is 
a relevant issue. One of the key characteristics 
is the compressibility of the material, which is 
not taken into account by equations for incom-
pressible media. In thin-layer rubber elements, 
this effect becomes more pronounced as the 
ratio of one of the geometric dimensions to the 
thickness of the structure increases.

The use of the finite element method in dis-
placements, despite its convenience, encounters 
computational errors. When the Poisson’s ratio 
approaches 0.5, numerical instabilities arise, 
complicating the attainment of reliable compu-
tational results.

This study proposes a new approach to 
organizing computational schemes in special-
ized automated design systems, which ensures 
more accurate modeling of the stress-strain 
state of structures. The foundation is the use of 
Open Modeling Language, which simplifies the 
description of mechanics problems and corre-
sponding numerical schemes within a unified 
variational framework.

The key result is the derivation of universal 
formulas for determining the potential energy 
of the system based on the moment finite ele-
ment scheme. The proposed approach elimi-
nates the “false shear” effect and improves the 
accuracy of numerical calculations for weakly 
compressible materials, which is confirmed by 
numerical analysis and experimental data
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2) low compressibility of the elastomer, the consideration 
of which creates certain computational difficulties compared 
to conventional materials;

3) during deformation and in a highly elastic state, the 
equilibrium between forces and displacements is established 
over a certain period of time and has a clearly pronounced 
relaxation character.

Although physical studies of elastomers began more than 
a hundred years ago, to date, there are no universal analytical 
methods for studying their stress-strain states. This is due to 
the complexity of solving the nonlinear differential equations 
that describe their behavior [6].

The implementation of the specific features of elastomers 
necessitates changes to existing calculation schemes and the 
development of effective numerical methods and algorithms 
for analysis using modern computers [7, 8].

Therefore, the development of tool systems aimed at 
calculating the stress-strain state of elastomer-based struc-
tures is relevant, especially for such materials (rubber and 
rubber-like materials), which are used in various fields of 
industry and engineering [9]. Due to their widespread use in 
the national economy, there is a need for rational design of 
structures based on them, taking into account efficiency and 
high performance quality.

2. Literature review and problem statement 

In work [10], the results of research aimed at improving 
the finite element method for modeling three-dimensional 
linear-elastic bodies are presented. It is shown that traditional 
approximate calculation methods demonstrate low accuracy 
in the case of weakly compressible materials. However, issues 
related to the correctness of numerical modeling for materials 
with a Poisson’s ratio close to 0.5 remain unresolved. This is 
due to the degeneration of the system matrices of equations, 
which leads to instability in the computational process.

Study [5] examines the homogenization process of 
multi-modulus composites. It was found that the mechanical 
behavior of such materials largely depends on their micro-
structure, which creates difficulties in constructing universal 
numerical models. Similar problems were identified in [11], 
where the effective properties of fiber-reinforced composites 
were investigated, taking into account the viscoelastic defor-
mation of their components.

The methodology proposed in [12] enabled the applica-
tion of a semi-analytical finite element method to spatial 
fracture mechanics problems. However, this approach has 
limitations in terms of its universal applicability, particularly 
in the case of nonlinear deformations. In turn, numerical 
modeling of viscoelastic deformation in rubber dampers, car-
ried out in [13], confirmed the necessity of improving models 
for weakly compressible materials.

In works [14, 15], approximate solutions to elasticity theo-
ry problems were obtained under the assumption of material 
bulging on the free surface according to a parabolic law. De-
spite the fact that these theories start from different simple 
hypotheses, they lead to very similar results. This may be due 
to the coefficients in the stress and strain formulas, which are 
calculated by summing infinite series.

It should be noted that the mixed models presented in 
works [16–18] have several drawbacks, such as the violation 
of the definiteness of the equation matrix. The standard FEM 
used in [19, 20] demonstrates slow convergence when the Pois-

son’s ratio equals 0.5, due to the polynomial functions not in-
cluding terms that describe the rigid-body displacements of the 
elements. At the same time, the so-called “false shear effect” 
is present, which consists in the fact that during the bending 
of thin plates and shells, the use of three-dimensional FEM 
significantly increases the errors associated with fictitious 
shear deformations.

One way to overcome these difficulties is to use the 
moment-based finite element method, which provides more 
accurate modeling of weakly compressible materials. Such an 
approach, applied in work [21], proposes to approximate the 
function by expanding it in a Taylor series and subsequently 
discarding the n-th terms of the series, which respond to 
displacements and fictitious shears during deformation. This 
allows the main properties of rigid-body displacements to be 
taken into account for isoparametric and curvilinear finite 
elements of isotropic elastic bodies. At the same time, the 
exact equations of the relationship between strain and dis-
placement are replaced with approximate ones.

All this provides grounds to assert that it is reasonable to 
conduct research aimed at applying the moment-based finite 
element scheme for the analysis of the stress-strain state of 
elastomeric structures.

3. The aim and objectives of the study

The aim of the study is to develop a procedure for calcu-
lating the stress-strain state of elastomeric structures using 
variational principles and its software implementation. This 
will make it possible to calculate the stress-strain state of 
objects, taking into account the properties of rigid displace-
ments in elastomeric structures.

To achieve the stated aim, the following objectives were set:
– to develop a model of the stiffness matrix relationships 

of a tetrahedral finite element based on the moment scheme 
of the finite element method; 

– to implement the model of the stiffness matrix relation-
ships of a tetrahedral finite element using the problem-ori-
ented language for describing computational schemes in 
elastomer mechanics – Open Modeling Language; 

– to conduct a numerical analysis of the stress-strain pa-
rameters during the stretching of a double-sided blade under 
different stress conditions; 

– to study the compression of a rubber sprocket under 
different mesh refinements.

4. Materials and methods of research 

The object of the study is the stress-strain state of elasto-
meric structures. 

The research hypothesis is as follows: the analysis of the 
stress-strain state of elastomeric structures can be adequately 
described using the stiffness matrix model of a tetrahedral 
finite element based on the moment finite element scheme. 
This is achieved by expanding the approximating function 
into a Taylor series and subsequently discarding the n-th or-
der terms of the series, which respond to displacements and 
fictitious shears during deformations. In this case, the exact 
equations of the relationship between strain and displace-
ment are replaced with approximate ones. 

In developing the model for calculating the stress-strain 
state, a modification of the finite element method was used – 
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the moment finite element scheme (MFES) for weakly com-
pressible materials. 

The developed models and algorithms were implemented 
as a separate software module, which extends the functionality 
of the FORTU-FEM tool system, devel-
oped by scientists at Zaporizhzhia National 
University (Ukraine) for automating the 
solution of elastomer mechanics problems 
using MFES. 

The software was implemented as a 
complete cross-platform product that can 
operate in Windows, Linux, and macOS 
operating systems. 

The reliability of the data obtained 
using this software was confirmed 
during the course of the research.

5. Research results of the procedure for calculating 
the stress-strain state of elastomeric structures using 

variational principles and their software implementation

5. 1 Model of the stiffness matrix relations of a tet-
rahedral finite element based on the moment scheme 
of the finite element method

All the relations necessary for finite element analysis 
can be directly derived from variational principles [21]. 
Fig. 1 shows one example of constructing the relations for 
calculating the stiffness matrix of a tetrahedral finite element 
using the Lagrangian variational principle.

The components of the displacement vector for this type 
of finite element can be described by the following relations:
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where ui, vi, wi are the unknown nodal values of the displace-
ment functions to be determined;
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To store information about the coefficients of the dis-
placement functions in the computer’s memory, a data struc-
ture should be created (a class in terms of the object-oriented 
approach), which has the following form (Fig. 2).

The formulas for calculating the components of the strain 
tensor can be directly derived from the Cauchy relations:
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According to formulas (3), the information about the ele-
ments of the strain tensor will be represented in memory in 
the following form (Fig. 3).

Similarly, by applying Hooke’s law, the components of the 
stress tensor can be described as follows:
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,

2 2
EL  E is the Young’s modulus and μ  

is Poisson’s ratio. Fig.	1.	Node	distribution	in	a	linear	tetrahedral	element
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Fig.	2.	Data	structure	for	storing	information	about	the	displacement	function
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According to formulas (4), the stress tensor for the tetra-
hedral finite element can be represented as follows (Fig. 4).

The scheme for deriving the differential equations of the 
theory of elasticity from the Lagrangian variational principle 
can be represented as the internal strain energy using the 
following formula:

δ = σ δε∫∫∫ d .ij
ijW V     (5)

After substituting the relations from formulas (2)–(4) into 
formula (5), the variation of the elastic strain energy was ex-
pressed in the following form. The formula must be complete:
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As a result of applying the method of variation of an ar-
bitrary constant to formulas (6), the desired relationships for 
calculating the coefficients of the local stiffness matrix of the 
tetrahedral finite element were obtained:
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where V is the volume of the finite element;
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and so on. 
It should be noted that the coefficients of 

the matrix K can be easily calculated automat-
ically, so all the formulas for their calculation 
are not provided further. 

Obviously, to implement such an approach 
for deriving the relationships that define the 
coefficients of the stiffness matrix for a given 

type of finite element, a certain formal 
tool [22] is required. 

5. 2. Software implementation of 
the moment method for finite ele-
ments using open modeling language 
in elastomer mechanics 

The use of computational technology 
for modeling the stress-strain state of elas-
tomer structures with the application of 
the aforementioned approach requires for-
mal tools for describing variational princi-

ples and the rules for deriving the corresponding calculation 
relationships [23, 24]. To automate the description of such 
models, specialized domain-specific languages (DSL) [4, 25] 
are practically used, which allow for the formal description of 
mathematical models of arbitrary complexity. 

The description of any formal language (DSL or program-
ming language) must unambiguously and consistently define 
its syntax and semantics. The syntax of a domain-specific 
language refers to the rules used to describe its structure. 
Accordingly, semantics refers to a specific set of rules for in-
terpreting the meaning (content) of the language constructs. 
The formal grammar of such a language is formed as the set 
of its syntactic rules. 

In practice, the extended Backus-Naur form (EBNF) [26, 27] 
is most commonly used for the formal description of DSLs and 
algorithmic languages, where all syntactic constructs are suc-
cessively expressed through one another. 

The structure of the description of the mathematical 
model of an elastomer structure and the scheme for its calcu-
lation using the OML language in the EBNF notation can be 
represented as follows:

1) OML-description – declaration-block operator-block.
2) Declaration-block – geometry-model-description re-

sulting-functions-description argument-description con-
stants-description auxiliary-functions-description variation-
al-principles-description:

– geometry-model-description – “MODEL” mesh-file EOL; 
– mesh-file – full-file-name; 
– resulting-functions-description – “RESULT” identifi-

er [,{identifier}] EOL; 
– argument-description – “ARGUMENT” identifi-

er [,{ identifier}] EOL; 
– constants-description – “CONSTANT” identifier-decla-

ration [, { identifier-declaration }] EOL; 
– auxiliary-functions-description – “FUNCTION” identi-

fier-declaration [, { identifier-declaration }] EOL; 
– variational-principles-description – “FUNCTIONAL” 

identifier-declaration [, { identifier-declaration }] EOL; 
– operator-block – identifier-declaration boundary-condi-

tions-description; 

Fig.	3.	Data	structure	for	storing	information	about	the	components	of	the	
strain	tensor

0 1 2 3 12 13 14 15 

0 0
2 3c c 0 0 0 

3 3
2 3c c 0 0 0 … 

0
1c 0 0 0 

3
1c 0 0 0 … 

… 

xx 

yz 
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– boundary-conditions-description – identifier “(“ logi-
cal-expression “)” – arithmetic-expression EOL. 

Here, EOL denotes the end of the line. 
It should be noted that when describing boundary con-

ditions, only the name of a variable declared in the resulting 
functions section can be used as an identifier. 

From the description above, it is clear that the calculation 
scheme of the elastomer mechanics problem consists of three 
logical sections: 

1) declaration of the list of variables used in the calcula-
tions; 

2) description of the necessary relationships and formu-
las (this section is not mandatory, as all necessary relationships 
can be set during the initialization of constants and variables); 

3) description of boundary conditions. 
This can be schematically represented as follows:

! General structure of the OML-description for the elasto-
mer mechanics problem

MODEL <file-name> 
RESULT u, v, w 
ARGUMENT x, y, z 
CONSTANT E, m, G, L 
FUNCTION Exx, Eyy, Ezz, Exy, Exz, Eyz, Sxx, Syy, Szz, 

Sxy, Sxz, Syz 
FUNCTIONAL U 

! Description of constants 
E = 5E+6 
m = 0.49 

! Description of auxiliary formulas 
Exx = diff(u, x) 
… 

! Description of the final variational principle 
U = 0.5*VolumeIntegral(Sxx var Exx + Syy var Eyy + 

Szz var Ezz + 
Txy var Gxy + Txz var Gxz + Tyz var Gyz) 

! Description of boundary conditions 
u(x^2 + y^2 - 9 == 0) = 0 
… 

This structure for describing the mathematical model of 
an elastomer structure in the OML language is convenient 
and intuitive for the user. 

Proof of completeness and consistency of the OML language. 
Theorem 1. The domain-specific language OML is algo-

rithmically complete. 
Proof. According to the theory of computability, a formal 

symbolic system is algorithmically complete (Turing-com-
plete) if any computable function can be implemented using 
it. To prove this theorem, it is necessary to show that in the 
OML language, any function F maps the set of real num-
bers to the set of real numbers (i.e., it belongs to the class 
of computable functions → : ,F  where  the set of real 
numbers). According to the semantics of the OML language, 
any of its functions returns a real number, a vector of real 
numbers, or a matrix of real numbers, with the dimensions 
depending on the type of finite element applied. 

Therefore, according to the Church-Turing thesis, any 
function F that can be computed by a physical device can also 

be computed by a Turing machine. Thus, it follows that any 
formula F in the OML language is computable. 

The theorem is proven. 
Theorem 2. The domain-specific language OML is con-

sistent. 
Proof. The proof of this theorem is conveniently done by 

contradiction. Suppose that the OML language is inconsistent. 
Then, there must exist at least one formula F for which the 
relation =F F is true. That is, the formulas F and F  must be 
identically true. According to the syntax and semantics of the 
OML language, this is impossible, as the logical negation of 
any non-zero arithmetic expression is identically equal to zero. 
If inversion is applied to an expression whose value is zero, the 
result will yield a non-zero value (usually one). Therefore, it is 
impossible to write a formula F in the OML language for which 
the values of F and F  and would be identical. 

The theorem is proven. 
The proposed scheme for deriving calculation relation-

ships from variational principles is universal and indepen-
dent of the type of finite element. Its application allows the 
creation of instrumental automated systems for the design 
and finite element analysis of complex elastomer structures, 
where the user can define the numerical calculation algo-
rithm for the problem. 

This approach allows for the most adequate modeling of 
the stress-strain state of elastomeric material structures, which 
require the application of specialized theories and calculation 
methods. However, its practical implementation requires a 
certain formal way of describing variational formulas.

5. 3. Numerical analysis of the stress-strain param-
eters of a bilateral blade under different stresses

In elastomer mechanics, the method for determining 
the elastic properties of rubber under tension is used. The 
strength of materials, the relative elongation at rupture, and 
the stress at a given elongation are studied. The essence of the 
method is that the sample is fixed at both ends and stretched 
at a constant speed until rupture occurs.

The test samples are in the form of a bilateral blade (Fig. 5). 
They are cut from vulcanized plates with a thickness 
of (2.0±0.2) using special knives.

Since the investigated blade is symmetrical, only half of the 
object was used for calculating the stress-strain state. One end 
is firmly fixed, while force is applied to the other end (Fig. 6).

Using the preprocessor of the FORTU-FEM system, a 
regular finite element model of the blade was constructed, 
consisting of 1463 nodes and 4347 elements (Fig. 7).

Fig. 8 shows an example of the displacement distribution 
along the entire sample in different directions. The material 
used in this case is “heat-resistant rubber” with the following 

Fig.	5.	Test	sample	in	the	form	of	a	bilateral	blade
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characteristics: Young’s modulus E=2.8×103 GPa, Poisson’s 
ratio v=0.49. The distributed load applied to the unrestrained 
end is q=14 GPa.

When studying the stress-strain state of an elastomeric el-
ement, tensile stresses are of the greatest interest. The nature 
of the growth of normal stresses is shown in Fig. 9.

Analysis of the results shows that when studying the 
blade, the moment scheme of the finite element method used 
in the OML system for calculating structures in a stress-
strain state confirms the adequacy of the obtained results 
presented in the technical documentation. 

During the study of the stretching problem of the bilateral 
blade, the relative elongation is 18 %. This result matches the 
data presented in [28].

5. 4. Study of the compression of a rubber sprock-
et-shaped element under different mesh refinements

The following example presents the results of a study 
on the elastic cam clutch with a sprocket-shaped element, 
designed for coaxial connection of shafts in mechanisms, 
such as a gearbox and an electric motor (Fig. 10).

The work compares two methods: the finite element 
method based on the FORTU-FEM instrumental system 
and the moment scheme of the finite element implemented 
in OML. 

This coupling is made of two half-couplings, between 
which a rubber sprocket element is placed. The teeth of the 
sprocket work in compression. When transmitting torque, 
half of the teeth are engaged in each direction. The func-
tionality of the rubber sprocket is determined by the magni-
tude of the compressive stresses. 

Sprockets for elastic cam clutches are designed for the 
connection of coaxial cylindrical shafts when transmitting 
a torque from 2.5 to 400 N·m and reducing dynamic loads. 
The parameters of the sprocket for the calculation are 
shown in Fig. 11.

Fig.	6.	Boundary	condition	for	fixing	the	test	sample	in	the	
form	of	a	blade

Fig.	7.	Discrete	model	of	the	blade

Fig.	8.	Distribution	of	stresses	in	different	directions:	a –	along	the	x-axis;	b	–	along	the	y-axis;	c	–	along	the	z-axis

a b c

Fig.	9.	Distribution	of	normal	stresses	in	the	blade	under	different	loads
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The calculation of the object was performed with the 
orientation of the torque counterclockwise, with the load 
applied to each tooth at points maximally distant from the 
center of the sprocket. The material characteristics were tak-
en from the technical plastic TМКЩ-С GOST 7338-90.

Finite element discretization in this study was carried out 
using tetrahedral and hexahedral elements (Fig. 12).

The displacement distribution in different directions is 
shown in Fig. 13.

In the case of using the Finite Element Method (FEM), 
the object was divided into 15,169 nodes and 74,154 finite 
elements, while using the Mid-Spherical Finite Element 
Method (MSFEM), it was divided into 15,169 nodes and 
12,359 finite elements. 

Table 1 shows the results of the calculation of the load 
applied to each tooth of the sprocket at the upper point. The 
torque for the study was 10 N·m and was directed counter-
clockwise.

Table	1

Calculation	results	for	the	sprocket

Poisson’s 
ratio, v

Young’s 
modu-
lus, Pa

Maximum deflection of 
the sprocket (standard 
FEM scheme), m 10-5

Maximum deflec-
tion of the sprocket 
(MSFEM), m 10-5

0.470 90,000 4.784 4.221
0.473 90,000 4.685 4. 145
0.478 100,000 5.103 4.999
0.480 100,000 5.035 4.837
0.482 100,000 5.012 4.821
0.488 100,000 5.001 4.801
0.490 100,000 4. 957 4.789
0.492 100,000 4.942 4.752
0.496 100,000 4.901 4.723
0.499 110,000 5.309 5.123

0.4999 110,000 5.267 5.089

To verify the effectiveness of the calculation schemes, 
numerical results of calculations using different methods in 
the FORTU-FEM system were compared (Fig. 14).

Fig.	10.	Rubber	sprocket:	a	–	rubber	sprocket	(external	view);	
b	–	rubber	sprocket	in	the	elastic	coupling	[29]

a

b

Fig.	11.	Sample	for	the	calculation	of	the	rubber	sprocket

r R=100 

b=16.5 

d=22 

r=45 

F

Fig.	12.	Finite	element	representation	of	the	rubber	sprocket:	
a	–	using	tetrahedral	finite	elements;		
b	–	using	hexahedral	finite	elements

a b

Fig.	13.	Displacement	distribution	in	different	directions:		
a	–	along	the	X-axis;	b	–	along	the	Y-axis;	c –	along	the	Z-axis

a b

c
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The results of numerical modeling of structures made 
from compressible materials proved to be significantly more 
accurate when using the moment-based finite element meth-
od, ensuring their closeness to analytical solutions.

6. Discussion of the results of modeling the mechanical 
behavior of elastomeric structures

The results of the study, which were aimed at using 
the moment-based finite element scheme for analyzing the 
stress-strain state of elastomeric structures, are explained 
by two key aspects. First, the moment-based finite element 
scheme was applied to model the stress-strain state of elas-
tomeric structures. Second, additional factors that were 
not considered in previous studies were taken into account 
during the numerical analysis.

The paper applies Lagrange’s variational principle, which 
allows obtaining relationships for calculating the stiffness 
matrix of the tetrahedral finite element (Fig. 1), an important 
step in the numerical modeling of elastomeric structures.

To store information about the coefficients of displace-
ment functions (2), strain tensor elements (3), and stress 
tensor elements (4) in the computer’s memory, an appropri-
ate data structure was created, as shown in Fig. 2–4. This is 
an optimal approach that ensures efficient data storage and 
processing, simplifies access to necessary information, and 
reduces computational costs. Thanks to this data organiza-
tion, it is possible to quickly perform calculations required 
for analyzing the stress-strain state of structures, as well as 
integrate the obtained results into further calculations or 
numerical simulations.

The stiffness matrix (7), obtained based on the mo-
ment-based finite element method (6), eliminates errors in-
herent in traditional methods, particularly by considering the 
effects of spurious shear, rigid displacements, and low com-
pressibility, which are characteristic of elastomeric materials.

During the study of the stress-strain state of elastomeric 
structures, the traditional finite element method, based on 
the discretization of a continuous body into a finite num-
ber of interacting elements at nodes, was widely used. This 
approach provided approximation of complex geometrical 
shapes and loading conditions. However, during the mod-
eling of elastomeric materials, which are characterized 
by low compressibility and high values of Poisson’s ra-
tio (close to 0.5), numerical instability and a decrease in the 

accuracy of results were observed. This is 
due to the degeneracy of the stiffness ma-
trix, leading to inaccurate results.

In contrast to the traditional finite el-
ement method, the moment-based finite 
element scheme took into account addi-
tional moments and deformations, which 
contributed to improved accuracy in mod-
eling elastomeric materials. Its application 
provided a more accurate description of the 
stress-strain state of low-compressibility 
materials, reducing errors caused by the 
spurious shear effect. This is particular-
ly important when analyzing structures 
with a high Poisson’s ratio, where standard 
methods show significant errors.

The results of the stretching of the bi-
lateral rib (Fig. 9) showed that as the load 
increased, the difference in relative elonga-

tions decreased, which was consistent with data from the lit-
erature. The analysis of the rubber sprocket (Table 1, Fig. 14) 
confirmed the higher accuracy of the moment-based scheme 
in the Poisson’s ratio range of 0.470–0.4999, representing a 
significant improvement compared to traditional FEM meth-
ods, which have reduced accuracy when modeling low-com-
pressibility materials. The application of the moment-based 
scheme eliminated the instability of calculations caused 
by the degeneracy of equation matrices and ensured the 
correctness of the obtained results even in critical material 
parameter ranges.

The analysis of the obtained results highlights the follow-
ing features:

1. The use of the moment-based finite element scheme 
ensured high accuracy in modeling the stress-strain state of 
elastomeric materials, as confirmed by the analysis of contact 
stresses and displacements in various geometric configurations.

2. In cases of high Poisson’s ratios, traditional meth-
ods showed significant errors, whereas the moment-based 
scheme provided results that were well aligned with analyt-
ical solutions.

3. The integration of Open Modeling Language enabled 
the universalization and automation of the calculation pro-
cess for different types of finite elements, reducing the need 
for individual algorithm customization for each specific case.

The proposed approach significantly improved the accu-
racy of calculations for the stress-strain state of elastomeric 
structures and allowed for the elimination of key drawbacks 
inherent in traditional analysis methods. However, despite its 
advantages, the application of the moment-based finite element 
method requires considerable computational resources, making 
it difficult to perform calculations for large-scale structures. At 
the same time, for isotropic and low-compressibility materials, 
this approach proved to be particularly effective.

The study’s limitations are that the advanced model 
of numerical analysis of elastomeric structures, although 
accounting for additional factors, is still based on certain 
assumptions about material properties, which may not fully 
reflect the behavior of real elastomers under complex op-
erating conditions. Furthermore, the study was conducted 
without considering the effect of long-term cyclic loading and 
material degradation, which could influence the long-term 
operational reliability of the structures.

Future development of the work may include expanding 
the capabilities of Open Modeling Language for modeling 

Fig.	14.	Comparative	graphs	of	the	deflection	of	the	sprocket	element	as	a	
function	of	Poisson’s	ratio	depending	on	the	calculation	scheme
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nonlinear deformation processes, improving adaptive mesh 
refinement, and developing new variational principles to 
enhance the accuracy of numerical analysis.

7. Conclusions

1. The developed mathematical model accounted for 
rigid displacements, the effect of spurious shear, and the low 
compressibility of elastomers, which ensured high accuracy 
in the calculations of the mechanical properties of materi-
als. The proposed scheme for deriving calculation relations 
based on variational principles turned out to be universal 
and independent of the type of finite element. Its application 
contributed to the development of automated design and nu-
merical analysis systems for complex elastomeric structures, 
allowing users to independently determine the calculation 
algorithm. Additionally, the considered approach ensured 
high calculation accuracy in cases where Poisson’s ratio 
approached 0.5. The use of the moment-based finite element 
scheme eliminated the spurious shear effect and achieved as-
ymptotic convergence of the results during mesh refinement.

2. During the research, a software implementation of the 
moment-based finite element scheme was carried out using the 
problem-oriented language Open Modeling Language, designed 
for describing computational schemes in elastomer mechanics 
tasks. The proposed methodology for forming calculation rela-
tions based on variational principles in the Open Modeling Lan-
guage environment turned out to be universal and independent 
of the type of finite element. Its application enabled the devel-
opment of instrumental automated systems for the design and 
finite element analysis of complex elastomeric structures, with 
the ability to flexibly form algorithms for numerical calculation.

3. A numerical analysis of the stress-strain state param-
eters of a bilateral blade under different loading levels was 
performed. The implemented model demonstrated high ef-
fectiveness, as confirmed by its accuracy: the maximum 
deviations between numerical calculations and experimental 
data do not exceed 5 %, and the average deviation is 3.7 %. The 
results show that under loading, the maximum displacement is 
0.09 mm, which is consistent with theoretical and experimen-
tal data. This confirms the model’s suitability for further use in 
engineering calculations and structural optimization.

4. The compression process of a rubber sprocket was stud-
ied at different mesh refinement levels. The analysis of the 

obtained results showed that the use of the moment-based 
finite element scheme provides significantly higher calcula-
tion accuracy compared to standard FEM methods. Specif-
ically, when modeling low-compressibility materials such as 
rubber, traditional methods demonstrate significant errors in 
regions with high Poisson’s ratios (ν→0.5), due to the degen-
eracy of the stiffness matrices. In the case of classical FEM, 
the maximum stress error in critical zones reached 17 %, 
while the moment-based scheme reduced this to 3 %. Unlike 
classical FEM, where computational errors can significantly 
affect results when compressing almost incompressible ma-
terials, the moment-based scheme accounts for additional 
moments and deformations. This allows for a more accurate 
reproduction of the material’s physical behavior and avoids 
the spurious shear effect. In particular, the maximum defor-
mations obtained using the moment-based scheme differed 
from analytical solutions by no more than 3.2 %, indicating 
the high reliability of the results.
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