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Dispersing nanomaterials in liquid crystals has emerged as a very promising non-synthetic way to pro-
duce advanced multifunctional and tunable materials. As a rule, dielectric and electrical characterization
of such materials is performed using cells of single thickness. As a result, the published reports vary even
for similar systems. Confusion still exists as to the effects of nanodopants and cell thickness on the dielec-
tric and electrical properties of liquid crystals. This factor hinders a widespread use of liquid crystals -
nanoparticles systems in modern tech products. In this paper, we report systematic experimental studies
of the combined effect of the cell thickness and iron oxide nanoparticle concentration on the electrical
and dielectric properties of nematic liquid crystals 6CB. The measured dielectric spectra can be divided
into three distinct regions corresponding to a low frequency (<10 Hz) dispersion, dispersion free range
(102 – 104 Hz (electrical conductivity) and 102 – 105 (dielectric permittivity)), and high frequency disper-
sion (104 – 106 Hz (electrical conductivity) and 105-106 Hz (dielectric permittivity)). The real part of the
dielectric permittivity is not affected by the cell thickness and its value can be tuned by changing the con-
centration of nanoparticles. At the same time, the electrical conductivity depends on both cell thickness
and nanoparticle concentration. At intermediate frequencies (102 – 104 Hz) the electrical conductivity
obeys the Jonscher power law and is dependent on the cell thickness because of ion-releasing and ion-
capturing effects caused by nanoparticles and substrates of the cell. In addition, its value is affected by
the electronic conductivity due to iron oxide nanoparticles and their nanoclusters. At higher frequencies
(104 – 106 Hz) the electrical conductivity follows a super linear power law and is nearly independent of
the cell thickness and nanoparticle concentration.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Numerous display and non-display applications of liquid crys-
tals rely on electric field induced reorientations of their director
[1–5]. Orientation transitions in liquid crystals depend on their
dielectric anisotropy [6]. In addition, such transitions can also be
altered by the presence of ions in liquid crystals [6,7]. Therefore,
measurements of dielectric and electrical properties of mesogenic
materials are a standard part of their material characterization
[6–8].

Future progress in liquid crystal science and technology
strongly depends on the development of new liquid crystalline
materials [9]. A very promising approach to create new mesogenic
materials involves mixing liquid crystals with nanoparticles
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[10,11]. This interdisciplinary field is characterized by a very high
level of research activity [10–12]. Physical properties of liquid crys-
tals doped with nanomaterials of different origin were studied by
many independent research groups around the globe. It was found
that nanomaterials mixed with liquid crystals can improve their
dielectric [13,14], electrical [14,15], optical and electro-optical
[16–18], nonlinear-optical [19], viscoelastic [20], and thermody-
namic properties including phase transition temperatures [21].
Additional references to original publications can be found in
review papers on liquid crystals doped with magnetic [22,23], fer-
roelectric [24], semiconductor and dielectric [25,26], carbon-based
[27,28], and metal [29] nanomaterials.

As was already mentioned, dielectric properties of liquid crystal
materials are very important because they enable applications of
liquid crystals relying on orientation transitions under the action
of electric fields [1–6]. Even low concentrations of nanoparticles
can significantly modify the dielectric properties of liquid crystals
as was recently reported for liquid crystal systems doped with fer-
roelectric [30–36], superionic [37–39], carbon-based [40–45],
magnetic [46–49], semiconductor [50–55], and metal [56–58]
nanomaterials. Dielectric spectroscopy is a versatile experimental
technique that allows measurements of complex dielectric permit-
tivity over a wide range of frequencies [59–61]. As a result, both
dielectric constants and electrical conductivity of liquid crystals
doped with nanoparticles can be found [7,8,15,61,62].

Because of the complexity of the studied materials, experimen-
tal results reported even for similar systems vary both quantita-
tively and qualitatively [63,64,65] and references therein]. Many
factors can affect the measured values of dielectric constants and
electrical conductivity of liquid crystals doped with nanomaterials.
Among them, the quality of alignment and the presence of ions in
liquid crystals are of utmost importance. Ions in liquid crystals can
interact with both nanopodants and substrates (alignment layers)
of a liquid crystal cell. Such interactions are very important in the
case of relatively thin cells [66–68]. They can result in the depen-
dence of the direct current (DC) electrical conductivity of liquid
crystals on the cell thickness [69,70]. At the same time, the use
of thicker cells can lead to a lower alignment quality of liquid crys-
tals thus affecting the measured values of both electrical conduc-
tivity and dielectric constants which are essentially anisotropic
quantities.

As a rule, dielectric and electrical properties of liquid crystals
doped with nanomaterials are studied using cells of the same
thickness and by varying the concentration of nanoparticles. Sev-
eral experimental reports indicate that electrical conductivity of
plain (undoped) liquid crystals depends on the cell thickness
[44,69,71,72]. In addition, recently performed analysis suggests
strong dependence of the DC electrical conductivity of liquid crys-
tals doped with nanoparticles on the cell thickness [66–68,70]. At
the same time, systematic experimental studies of the combined
effect of the cell thickness and nanoparticle concentration on the
dielectric and electrical properties of liquid crystals doped with
nanomaterials are still missing. Experimental studies of this com-
bined effect are a major goal of our paper. More specifically, we
study the effect of the iron oxide nanoparticle concentration and
the effect of the cell thickness on the dielectric and electrical prop-
erties of nematic liquid crystals 6CB.
2. Materials and experimental methods

To study the combined effect of the cell thickness and nan-
odopant concentration on dielectric and electrical properties of
nematic liquid crystals readily available materials were chosen.
More specifically, a standard nematic liquid crystal 4-cyano-40-
2

hexylbiphenyl (6CB) was chosen as a mesogenic host and iron
oxide nanoparticles – as nanodopants. The shape of iron oxide
nanoparticles (NP) was nearly spherical. Their diameter was
5 nm. To reduce the aggregation of nanoparticles, they were coated
with oleic acid and dispersed in chloroform. Nanoparticles were
purchased from Ocean Nanotech.

The composites of thermotropic liquid crystal 6CB and iron
oxide nanoparticles were prepared using the following procedure.
The nanoparticles dispersed in chloroformwere added to the liquid
crystal in the isotropic phase. Subsequently, the mixture was stir-
red in the isotropic phase until the chloroform was evaporated. As
a result, the composite with the concentration 0.1 wt% was pre-
pared. Diluted samples, i.e., the samples with the concentrations
0.05 and 0.01 wt%, were prepared by adding an additional amount
of liquid crystals. Before adding liquid crystals, as well as before
each sample preparation for measurements, the composites were
sonicated to eliminate the presence of aggregates.

Sandwich-like cells with homeotropic boundary conditions
were used in our research. To reduce the impact of ‘‘edge effects”,
a cell was equipped with transparent measuring electrodes made
of indium – tin oxide (ITO). To achieve a homeotropic alignment
of 6CB nematic liquid crystals, ITO electrodes were covered with
a thin polymer film. Homeotropic boundary conditions were cho-
sen intentionally. Utilized nematic liquid crystals (6CB) have a pos-
itive dielectric anisotropy De (polarizability along the long axis of
molecules is higher than that along the short axis, i.e., De > 0)
[73,74]. In the case of a planar liquid crystal cell, the applied exter-
nal electric field leads to reorientation of planarly aligned meso-
genic molecules along the field. As a result, to some extent the
effect of the cell thickness and nanoparticle concentration can be
masked by the electric field induced orientation transitions of a liq-
uid crystal director. Even if the applied electric field is below the
threshold value, the planar alignment of liquid crystals can become
less perfect for thicker cells. As a result, the correct comparison of
thin and thick cells will be compromised. To overcome these
experimental challenges, cells with homeotropic boundary condi-
tions can be utilized. In this case, the reduced quality of alignment
for thicker cells can be mitigated by applying voltage that is greater
than the threshold voltage of nematic liquid crystals. As a result,
both thin and thick cells have nearly the same quality of homeotro-
pic alignment.

The studies were performed at three different cell thicknesses
d: 5, 20 and 50 lm. The thickness of the cell was set by spacers that
were placed in between the guard electrodes.

Three different concentrations of iron oxide nanoparticles were
used, namely 0.01, 0.05, and 0.1 wt%. Polarizing microscope obser-
vations revealed that the presence of even the highest concentra-
tion of nanodopants in liquid crystal does not influence the
homeotropic orientation of LC molecules.

The measurements of dielectric and electrical properties of 6CB
doped with iron oxide nanoparticles were carried out using a stan-
dard oscilloscopic method [61,75]. The amplitude of the applied
sinusoidal voltage was 2.5 V. Measurements of the dielectric prop-
erties of the samples were performed within the frequency range
f = 6. . . 106 Hz at the temperature 293 K. Using the oscilloscopic
method, we measured the values of the electrical resistance R
and electrical capacitance C for individual frequencies, assuming
that the equivalent circuit of the sample is the resistance and
capacitance connected in parallel. Since we used the logarithmic
scale to analyze the frequency dependences, the frequencies were
chosen so that the interval between them on the logarithmic scale
was the same.

According to the known geometric dimensions, the imaginary
e‘‘ and real e’ components of the complex dielectric permittivity
e* were determined based on the values of R and C, respectively
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[61]. Also, Eq. (1), was used to determine the electrical conductivity
r of the studied samples at various frequencies (e0 is the vacuum
permittivity):

r ¼ 2pf e0 e0 0 ð1Þ

The main conclusions were made by analyzing frequency
dependences of e’, e‘‘ and r at different concentrations of nanopar-
ticles and different sample thicknesses.
3. Results and discussion

3.1. Frequency dispersion regions of the real part of the complex
dielectric permittivity

Fig. 1 shows the frequency dependence of the real part of the
complex dielectric permittivity e’ for nematic liquid crystals doped
with iron oxide nanoparticles (6CB + 0.01 % wt/wt NP) measured
for three various cell thicknesses: 5 (1), 20 (2) and 50 lm (3).
The dielectric spectra shown in this figure can be divided into three
regions: A (f < 102 Hz), B (102 < f < 105 Hz), and C (f > 105 Hz). In the
B region of the dielectric spectrum, the value of e’ does not depend
on the frequency, and in the regions A and C it depends on the fre-
quency, so it is logical to analyze the dielectric spectrum in each of
these regions in greater detail.

3.2. The low-frequency dispersion of e’ (region A)

It is generally accepted that the low frequency dispersion of the
real part of the complex dielectric permittivity is caused by the
electrode polarization effect when the applied low frequency elec-
tric field results in the ion accumulation near the electrodes and
the formation of electric double layers (EDL) [8,61]. The electrode
polarization can also be accompanied with a charge transfer
through the liquid crystal – electrode interface. As was shown in
paper [61], in the case of homeotropic orientation of molecules,
the low-frequency dispersion of the components of the complex
dielectric permittivity e’ and e‘‘ caused by charge transfer through
the near-electrode region of the sample can be described by the
Cole–Cole equation (2):

e� ¼ e1 þ eS � e1
1þ ðixsÞ1�a ð2Þ
Fig. 1. Frequency dependences of the real part of the complex dielectric permit-
tivity e’ for 6CB + 0.01 % wt/wt NP for three various sample thicknesses: 5 (1,
squared times), 20 (2, red circles), and 50 lm (3, blue triangles). Temperature is
293 K (nematic phase of liquid crystal 6CB).

3

where es and e1 are the values of the dielectric permittivity at the
frequencies f = 0 and f =1, x = 2pf is the angular frequency, s is the
dielectric relaxation time, and a is the Cole–Cole parameter.

To successfully apply Eq. (2) for the analysis of the charge trans-
fer processes in liquid crystals, the frequency should vary within a
wide range spanning several orders of magnitudes (10-4 - 102 Hz)
[61]. Given limitations of the frequency generator used in our
experiments, it was practically impossible to find the values of s,
es and a for the studied samples because only a small part of the
dependence e‘‘(e’) (i. e. Cole–Cole diagrams) was measured. An
order of magnitude estimation of s, es and a using Eq. (2) was per-
formed for the sample ‘‘6CB + 0.1 wt% NP” of the thickness 50 lm
(for the chosen sample this could be made with the least error).
Assuming that a = 0, it was found that s = 0.13 ± 0.10 s, and es =
2400 ± 2000. In addition, by following a procedure described in
paper [61], the thickness W of the formed electrical double layer
(EDL) was also estimated using Eq. (3):

W ¼ d es
2e1

; ð3Þ

Eq. (3) assumes that near each of the electrodes the electric
double layers (EDL) with the same parameters are formed. As a
result, for the chosen sample ‘‘6CB + 0.1 wt% NP” with the thickness
50 lm, the following value was found: W = 150 ± 130 nm.
3.3. The dispersion of e’ at intermediate (region B) and high (region C)
frequencies

The real part of the complex dielectric permittivity does not
depend on frequency in the region B (102 – 105 Hz, Fig. 1). In addi-
tion, it is independent of the cell thickness. (Fig. 1). At the same
time, the value of e’ can be tuned by changing the concentration
of iron oxide nanoparticles in nematic liquid crystals as shown in
Fig. 2.

Experimental results shown in Fig. 2 suggest that even low con-
centrations of iron oxide nanoparticles can increase the value of a
dielectric permittivity of nematic liquid crystal host. This result is
consistent with existing reports for nematic liquid crystals doped
with low concentrations of nanoparticles such as ferroelectric
[31], zinc ferrite [47], carbon coated nanoparticles [48], etc. (addi-
tional references can be found in reviews [10,15,20]). Quantitively,
this increase can be described by applying recently developed
models [10].
Fig. 2. Frequency dependence of the real part of the complex dielectric permittivity
e’ in the region B measured for nematic liquid crystals 6CB doped with iron oxide
nanoparticles of different weight concentration cNP. The same values of e’ were
obtained for cell thickness of 5, 20, and 50 lm. Temperature is 293 K (nematic
phase of liquid crystals 6CB).
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High frequency dispersion of e’ (region C) can be associated
with the reorientation of a mesogenic molecule around its short
axis [76]. In addition, in the case of thin cell (Fig. 1, squared times)
parasitic effects caused by a finite resistance of ITO electrodes
(�10 X=square) can also contribute to the observed high frequency
dispersion of e’ [77,78].

While the real part of dielectric permittivity is independent of
the cell thickness in the region B (102 – 105 Hz), both low fre-
quency (<102 Hz, region B) and high frequency (>105 Hz, region
C) dispersion of e’ becomes more pronounced for thinner cells
(Fig. 1). Dielectric measurements performed at intermediate fre-
quencies (102 – 105 Hz, region B) reveal information about bulk
properties of nematic liquid crystals doped with nanoparticles.
Experimental results presented in Fig. 1,2 also indicate that bulk
dielectric (e’) measurements are independent of the cell thickness.
As long as the alignment of liquid crystal samples is controlled,
both thin and thick samples yield the same values of the real part
of dielectric permittivity of liquid crystals doped with
nanoparticles.
Fig. 3. Frequency dependence of electrical conductivity r measured for nematic
liquid crystals 6CB doped with 0.01 % wt/wt nanoparticles: (a) The cell thickness is
5 lm; (b) The cell thickness is 20 lm; and (c) The cell thickness is 50 lm.
Temperature is 293 K.
3.4. Frequency dispersion regions of the imaginary part of the complex
dielectric permittivity.

In many practical cases, instead of the frequency dependence of
the imaginary part of the complex dielectric permittivity e‘‘, it is
more convenient to analyze the frequency dependence of the con-
ductivity r because the values of e” and r are related according to
Eq. (1). In this analysis, we excluded the low frequency region, and
focused on intermediate (102-104 Hz) and high (>104 Hz) fre-
quency ranges. The frequency dependences of the electrical con-
ductivity of nematic liquid crystals 6CB doped with 0.01 % wt/wt
nanoparticles measured using cells of three different thicknesses
(5, 20, and 50 lm) are shown in Fig. 3.As can be seen from Fig. 3,
the frequency dependence of the electrical conductivity exhibits
two distinct regions that correspond to intermediate (102 – 104

Hz) and high (104 – 106 Hz) frequency ranges. In the case of inter-
mediate frequency range, the observed frequency dependence of
the electrical conductivity r obeys Jonscher power law also known
as the universal dielectric response [79] described by Eq. (4):

r ¼ rDC þ Afm ð4Þ

where rDC is the direct current (DC) electrical conductivity, f is the
frequency, A and m are empirical parameters.

By applying Eq. (4) to experimental data (solid red curve, Fig. 3),
the values of rDC, A and m can be evaluated. The first term of Eq.
(4), DC electrical conductivity, is caused by ions present in liquid
crystals doped with nanoparticles. The second term of Eq. (4) can
be associated with electronic component of electrical conductivity.
Ionic component of electrical conductivity dominates in the inter-
mediate frequency range. Fig. 3 indicates that, for a given concen-
tration of nanoparticles, the value of DC electrical conductivity
depends on the cell thickness.

Similar behavior was observed for liquid crystals doped with
higher concentrations of nanoparticles (Figs. 4 and 5).

Within an intermediate frequency range samples filled with
nematic liquid crystals doped with low concentrations (0.01 %
wt/wt and 0.05 % wt/wt) of nanoparticles show a very similar
trend: the slope of a solid red curve decreases as a cell thickness
goes up approaching a nearly zero value for a 50 lm thick cell
(Figs. 3 and 4). This behaviour suggest that the ionic component
of electrical conductivity is a dominant factor for thicker cells.
For thinner cells we should also consider a contribution due to
electronic conductivity of liquid crystals and nanoparticles. This
contribution can be enhanced by a possible formation of chain-
like aggregates of nanoparticles. The interactions between such
4

chain-like aggregates can significantly increase the electronic com-
ponent of the measured electrical conductivity of thinner cells
(Fig. 3ab and Fig. 4ab). The applied electric field can facilitate the
orientation of such chain-like nanoaggregates along the field that
coincides with the direction of liquid crystal director. Thermal fluc-
tuations can break such aggregates thus decreasing their contribu-
tion to the electrical conductivity of thicker samples. As a result,
50 lm thick cells exhibit nearly frequency independent electrical
conductivity of ionic origin in the intermediate frequency range
(Fig. 3c and 4c). It should be noted that further increase in the con-
centration of nanoparticles (0.01 wt%) results in a mixed
electronic-ionic conductivity of the studied thin and thick samples
(Fig. 5).



Fig. 5. Frequency dependence of electrical conductivity r measured for nematic
liquid crystals 6CB doped with 0.1 % wt/wt nanoparticles: (a) The cell thickness is
5 lm; (b) The cell thickness is 20 lm; and (c) The cell thickness is 50 lm.
Temperature is 293 K.

Fig. 4. Frequency dependence of electrical conductivity r measured for nematic
liquid crystals 6CB doped with 0.05 % wt/wt nanoparticles: (a) The cell thickness is
5 lm; (b) The cell thickness is 20 lm; and (c) The cell thickness is 50 lm.
Temperature is 293 K.
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Experimental results shown in Fig. 3, Fig. 4, Fig. 5 unambigu-
ously indicate that electrical conductivity of the studied samples
depends on the concentration of nanoparticles and on the cell
thickness. By applying Eq. (4) to experimental data obtained at
intermediate frequencies (102 – 104 Hz), the values of rDC, A and
m can be found. They are compiled in Table 1.

As was mentioned in the introduction section, the DC electrical
conductivity is a very important parameter of liquid crystal mate-
rials. Table 1 can be used to analyze the dependence of the DC elec-
trical conductivity of the studied samples on the concentration of
nanoparticles and on the cell thickness. This dependence is shown
in Fig. 6.

As can be seen from Fig. 6a, the DC electrical conductivity of the
studied samples increases as the concentration of nanoparticles
5

increases. This increase is relatively weak for thin (5 lm) cells
and becomes more pronounced if thicker (20 and 50 lm) cells
are used (Fig. 6a). The observed increase in the DC electrical con-
ductivity suggests that nanoparticles act as ion-generating objects.
This behaviour is consistent with existing literature [63,64,80,81]
and can be caused by several factors such as desorption and ioniza-
tion of surfactants (oleic acid) stabilizing nanoparticles and/or by
ionic contamination of nanodopants that occurred during their
chemical synthesis and handling.

A very interesting result is the observed monotonous and non-
monotonous dependence of the DC electrical conductivity of the
studied samples on the cell thickness (Fig. 6b). A rather low con-
centration of nanoparticles (0.01 % wt/wt) in liquid crystals results



Fig. 6. The dependence of the DC (ionic) electrical conductivity rDC of nematic liquid crystals doped with nanoparticles on their weight concentration cNP (a), and (b) on the
cell thickness d.

Table 1
The values of rDC, A and m obtained by applying Eq. (4) to experimental data measured for an intermediate frequency range (102–104 Hz).

Cell cNP ¼ 0:01 % wt/wt cNP ¼ 0:05 % wt/wt cNP ¼ 0:1 % wt/wt

rDC, S/m A m rDC, S/m A, S
ms�m m rDC, S/m A S

ms�m m

5 lm 1:900� 10�8 1:776� 10�10 0.725 2:126� 10�8 3:744� 10�10 0.585 2:492� 10�8 8:424� 10�9 0.195

20 lm 7:019� 10�9 4:427� 10�9 0.216 6:168� 10�8 3:369� 10�11 0.677 8:497� 10�8 1:030� 10�10 0.755

50 lm 3:249� 10�8 5:792� 10�11 0.479 6:840� 10�8 0 – 1:682� 10�7 2:546� 10�12 1.171
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in a non-monotonous (a decrease followed by an increase) depen-
dence of the DC electrical conductivity on the cell thickness
whereas larger nanodopant concentrations (0.05 and 0.1 % wt/
wt) lead to a monotonous increase in the values of rDC (Fig. 6b).
The observed dependence can be explained by considering the
combined effect of nanoparticles and cell substrates on the concen-
tration of ions in liquid crystal materials modelled in recent papers
[66–68]. In the case of thin (5 lm) cells, the interactions between
ions and substrates of the liquid crystal cell are dominant factors.
The majority of ions generated by nanoparticles can get trapped
by the substrates of the cell. As a result, the DC electrical conduc-
tivity exhibits a very weak dependence on the concentration of
nanoparticles (Fig. 6ab). For intermediate values of the cell thick-
ness (20 lm), the interactions between ions, substrates, and
nanoparticles govern the DC electrical conductivity. Fig. 6 indicates
that the ion capturing effect due to the substrates is still stronger
than the ion releasing effect caused by low (0.01 % wt/wt) concen-
trations of nanoparticles in 20 lm thick liquid crystal cells. Further
increase in the concentration of nanoparticles (0.05 and 0.1 % wt/
wt) make ion releasing effect due to nanodopants dominate the
ion capturing effect caused by the substrates of the cell. In the case
of thick (50 lm) cells, the effect of interactions between ions and
substrates on the DC electrical conductivity becomes insignificant.
Thus, ion-generating properties of nanoparticles become a domi-
nant factor that determines the values of the DC electrical conduc-
tivity of thick cells.

In the case of high frequency range (104–106 Hz), the depen-
dence of the electrical conductivity r on frequency f can be
described by a power law (5):
Table 2
The values of parameters B and n obtained by applying Eq. (5) to experimental data meas

Cell cNP ¼ 0:01 % wt/wt cNP ¼
B, S

ms�n n B, S
ms�n

5 lm 10�15:467 2.073 10�13:7

20 lm 10�16:933 2.253 10�16:5

50 lm 10�15:631 2.006 10�13:5

6

r ¼ Bf n ð5Þ

where B and n are empirical parameters. The values of empirical
parameters B and n were evaluated by applying Eq. (5) to experi-
mental results (blue solid curves, Fig. 3, Fig. 4, Fig. 5). They are listed
in Table 2.

Eq. (5) originates from relaxation phenomena due to the pres-
ence of mobile charge carriers of both electronic and ionic origin
[79,82,83]. In addition, dispersion losses caused by dipolar relax-
ations and polarization processes originated from short range
charge motions can also contribute to the AC conductivity
[82,83]. Interestingly, while the DC conductivity of the studied
samples strongly depends on both the concentration of nanoparti-
cles and on the cell thickness (Fig. 6), the high frequency AC con-
ductivity of the same samples is nearly independent of the
nanoparticle concentration for intermediate (20 lm) and thick
(50 lm) cells (Fig. 7). The results obtained for thin (5 lm) samples
can be affected by the formation of nanoparticle clusters such as
chains and molecular aggregates. This scenario can be realized if
the interactions between nanoparticles are greater than the forces
between liquid crystal molecules and nanodopants.

Experimental data shown in Fig. 7 suggests that the high-
frequency electrical conductivity of the studied samples is caused
by both free and bound ionic and electronic charge carriers in a liq-
uid crystal host (major contribution) and it is nearly unaffected by
nanodopants (for 20 lm and 50 lm thick cells). According to exist-
ing literature, the empirical parameter n of Eq. (5) can be related to
the mechanisms of the conduction in the studied samples
[79,82,83,84]. The obtained values of n ¼ 1:668� 2:253 (the super
ured for high frequency range (104–106 Hz).

0:05 % wt/wt cNP ¼ 0:1 % wt/wt

n B, S
ms�n n

55 1.706 10�13:197 1.602
14 2.177 10�13:875 1.742
92 1.668 10�14:314 1.785



Fig. 7. The dependence of the AC electrical conductivity rDC of nematic liquid crystals doped with nanoparticles on their weight concentration cNP (a), and (b) on the cell
thickness d. The frequency f is 1 MHz.
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linear power law) overlap with recent experimental results
reported for thermotropic compound 4-nonyloxy benzoic acid
(9OBA) [85], nematic liquid crystal (E63) doped with nickel
phthalocyanine [86], and nematic liquid crystals doped with dia-
mond nanoparticles [87].
4. Conclusion

In this paper, we analysed the combined effect of the nanopar-
ticle concentration and cell thickness on the dielectric and electri-
cal properties of homeotropically aligned nematic liquid crystals.
The dielectric spectra were measured within the 6 – 106 Hz fre-
quency range at room temperature (293 K).

We found that the frequency dependence of the real part of the
complex dielectric permittivity e’ exhibits three regions, namely
region A (f < 102 Hz), region B (102 < f < 105 Hz), and region C (-
105 < f < 106 Hz) (Fig. 1). In the region A, the dispersion of e’ is
caused by the near-electrode process and can be approximated
by the Cole-Cole equation. This equation allowed to estimate the
characteristic relaxation time (0.13 ± 0.10 s) and the thickness of
the electrical double layers (150 ± 130 nm) for the sample
‘‘6CB + 0.1 wt% NP” of the thickness 50 lm. In the region B (102 <
f < 105 Hz), the real part of the complex dielectric permittivity e’
does not depend on the frequency. It is also independent of the cell
thickness (Fig. 1). In this region, bulk dielectric properties of the
studied samples can be evaluated. The value of e’ can be tuned
by changing the concentration of nanodopants (Fig. 2). A high fre-
quency dispersion of e’ (region C, (105 < f < 106 Hz)) is caused by
the reorientation of liquid crystalline molecules around its short
axis. This observation agrees with existing literature [76]. In addi-
tion, a high frequency dispersion of e’ can also be the result of a
parasitic effect related to ITO electrodes for thin cells [77,78].

To eliminate the effects caused by the electrode polarization,
the electrical conductivity of the studied samples was analysed
in the frequency range from 102 Hz to 106 Hz. It was found that
in the frequency range from 102 Hz to 104 Hz the electrical conduc-
tivity of the studied samples obeys the Jonscher power law (Eq.
(4)). The first term of Eq. (4) accounts for the direct current (DC)
electrical conductivity, and the second term corresponds to the
alternating current (AC) electrical conductivity. The DC electrical
conductivity is caused by ions. By applying it to experimental data
(red solid curves, Figs. 3-5), the values of the DC electrical conduc-
tivity rDC were found (Table 1). These values depend on the con-
centration of nanoparticles and on the cell thickness (Fig. 6,
Table 1). The observed behaviour of rDC can be explained by con-
sidering the combination of ion capturing effect caused be the sub-
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strates of the cell and ion releasing effect due to ionic
contamination of nanoparticles. In the case of thin (5 lm) cells,
the ion capturing effect dominates and, as a result, the dependence
of the DC conductivity on the nanoparticle concentration is very
weak. In other words, the effect of nanoparticles on the electrical
properties of liquid crystals is ‘‘hidden”. The use of thicker
(50 lm) cells can reveal the true effect of nanoparticle on the DC
electrical conductivity. For intermediate thicknesses (20 lm), the
competition between the effect due to the substrates and the effect
due to nanoparticles can result in an interesting non-monotonous
dependence of the DC electrical conductivity on the cell thickness
(Fig. 6b). This experimental finding has important practical impli-
cations. An experimental evaluation of the DC electrical conductiv-
ity of liquid crystal materials should involve samples of different
thicknesses. This approach can also help to differentiate between
the ionic effects caused by the substrates and by the nanoparticles.
The alternating current (AC) electrical conductivity (the second
term, Eq. (4)) in the studied frequency range can be attributed to
the electronic conductivity due to nanodopants in liquid crystals.
In the case of relatively thin cells, a formation of chains of nanopar-
ticles can substantially contribute to the AC electrical conductivity.

In the frequency range from 104 Hz to 106 Hz the electrical con-
ductivity of the studied samples can be described by a power law
(5) and has a mixed, ionic-electronic origin.
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