React. Kinet. Catal. Lett., Vol. 34, No. 1, 41-44 (1987)

EFFECT OF LIGANDS ON THE HYDROGENATION SELECTIVITY IN THE PRESENCE OF RHENIUM CATALYSTS

V.M. Belousov, T.A. Palchevskaya and L.A. Zyuzya Institute of Physical Chemistry, Kiev 252028, USSR

> Received January 21, 1986 Accepted December 15, 1986

It has been established that the catalytic activity of rhenium oxohalide complexes with phosphorus- or sulfur-containing ligands in hydroganation of C_6-C_{10} olefins, nitrobenzene and p-nitrotoluene is primarily determined by the original ligand to rhenium ion bond. Chain length of olefins does not affect their hydrogenation rate.

Каталитическая активность рениевых оксогалогенидных комплексов с фосфор- или серосодержащими лигандами в реакциях гидрирования олефинов С₆-С₁₀, нитробензола и п-нитротолуола определяется прежде всего природой связи рений-лиганд в исходном комплексе. Длина цепи олефинов не влияет на скорость их гидрирования.

Hydrogenation of nitrobenzene and hexene-1 on metallic rhenium is known to proceed with comparable rates at temperatures above 373 K and $P_{H_2} > 10^4$ kPa [1]. Soluble rhenium thiocomplexes catalyze the reduction of nitrobenzene to aniline at atmospheric pressure and T=338 K, whereas under the same conditions hexene-1 is not hydrogenated [2]. We have established previously [3] that rhenium (V,VI) complexes with various

ž

Akadémiai Kiadó, Budapest

organophosphorus ligands are catalytically active in hydrogenation of hexene-1 at 338 K and $P_{\rm H}$ =5.06x10³ kPa.

The aim of the present $study^2$ was to examine the effect of adding phosphorus- and sulfur-containing ligands on the catalytic properties of rhenium(V) oxohalide complexes in hydrogenation of C_6-C_{10} olefins, nitrobenzene and p-nitrotoluene.

ReOHal₃(PPh₃)₂ solutions (Hal=Cl or Br) in dimethylformamide become catalytically active in hydrogenation of $C_6 - C_{10}$ olefins at P_H = (1-20)x10² kPa and T=354 K. The dependence of conversion of²the olefins examined on the time of their reduction on Cl- or Br-containing rhenium complexes with 8-fold excess of triphenylphosphine (PPh₃) or 1-methyl-2-mercaptoimidazole (2-MI) and in their absence is illustrated in Fig. 1.

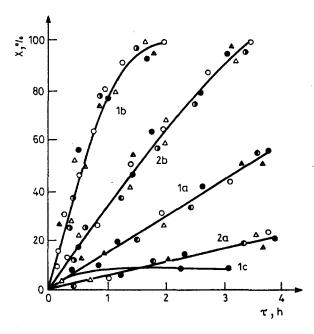


Fig. 1. Conversion of C₀-C₁₀ olefins vs. hydrogenation time in the presence of ReOBr₃(PPh₃)₂ without ligands (la), with an 8-fold excess of PPh₃ (lb) or 2-MI (lc); in the presence of ReOCl₃(PPh₃)₂ without ligands (2a), with an 8-fold excess of PPh₃(2b) -•-• - hexene, -•-• -heptene, -A-A - nonene, -o-• - octene, -A-A -dodecene It is seen that the chain length of these olefins does not affect their hydrogenation rate. Rhenium oxobromide complexes are 3-4 times more active than chlorine-containing analogs, an excess of PPh₃ stabilizes the activity of rhenium complex, whereas the addition of excess 2-MI decreases the reaction rate. The latter phenomenon is apparently due to the partial formation of catalytically less active sulfur-containing fragments in hydrogenation of olefins [4]. ReOBr₃ (2-MI)₂ was found to be catalytically inactive.

The reduction rate of the nitro group of aromatic hydrocarbons, nitrobenzene and p-nitrotoluene in the presence of ReOBr₃(PPh₃)₂ is lower compared with that of the olefins tested (Fig. 2). In the absence of complex forming additives (2-MI or PPh2) the process proceeds with an induction period. For nitrobenzene and p-nitrotoluene this period is 2 and 1 h, respectively. The 12 % conversion of nitrobenzene is observed after 6.5 h instead of 4.5 h for nitrotoluene, which indicates the higher reactivity of the latter. In the presence of 2-MI or PPh, no induction period is observed. The nature of complexing ligands practically does not change the reaction rate. Nitrocompounds are hydrogenated on the rhenium triphenylphosphine oxobromide catalyst a thousand times faster than olefins (Figs 1,2). Nitrobenzene hydrogenation on ReOBr₂ (2-MI)₂ has no induction period and its rate is 40 times greater than on ReOBr₃(PPh₃)₂.

Thus in hydrogenation of olefins and nitro-compounds a decisive role in the catalytic activity of rhenium contacts is played by the nature of the Re-S or RE-P bonds in the initial complex. The nature of substrate ligand is also important. In the case of ReOHal₃(PPh₃)₂, the chain length of C_6-C_{10} olefins does not affect the process rate, whereas in hydrogenation of aromatic hydrocarbons an activating action of the CH₃-group is observed. The addition of complex formation ligands (2-MI or PPh₃) exerts a much weaker influence on the catalytic properties of rhenium complexes.

BELOUSOV et al.: RHENIUM CATALYSTS

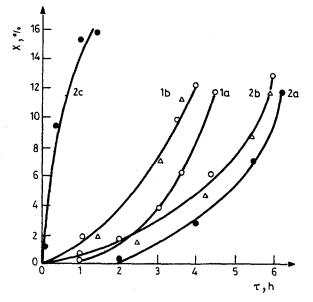


Fig. 2. Conversion of nitro-compounds vs. hydrogenation time in the presence of $\text{ReOBr}_3(\text{PPh}_3)_2$: for p-nitrotoluene without ligands (la), with an 8-fold excess of 2-MI and PPh₃ (lb); for nitrobenzene without ligands (2a), with an 8-fold excess of 2-MI and PPh₃ (2b); on ReOBr₃(2-MI)₂ without ligands (2c) $-\Delta - \Delta - 2\text{MI} - 0 - 0 - PPh_3$ $C_{\text{Re}} = 1.6 \times 10^2 \text{ M}, P_{\text{H}_2} = 18 \times 10^2 \text{ kPa}, T = 354 \text{ K}$

REFERENCES

- H.S. Broadbent, G.C. Campbell, W.J. Bartly, J.H. Johnson: J. Org. Chem., 24, 1847 (1959).
- V.M. Belousov, G.I. Korenyako, Yu.N. Kukushkin, K.V. Kotegov, N.V. Fadeeva: Dokl. Akad. Nauk Ukr. SSR, <u>12</u>, 1011 (1979).
- V.M. Belousov, T.A. Palchevskaya, O.M. Negomedzyanova,
 K.V. Kotegov: React. Kinet. Catal. Lett., <u>28</u>, 41 (1985).
- 4. V.M. Belousov: Katal. Kataliz., 21, 13 (1983).